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Abstract

Incorporating diffusion-generated synthetic data
into adversarial training (AT) has been shown to
substantially improve the training of robust image
classifiers. In this work, we extend the role of
diffusion models beyond merely generating syn-
thetic data, examining whether their internal rep-
resentations, which encode meaningful features
of the data, can provide additional benefits for
robust classifier training. Through systematic ex-
periments, we show that diffusion models offer
representations that are both diverse and partially
robust, and that explicitly incorporating diffusion
representations as an auxiliary learning signal dur-
ing AT consistently improves robustness across
settings. Furthermore, our representation analysis
indicates that incorporating diffusion models into
AT encourages more disentangled features, while
diffusion representations and diffusion-generated
synthetic data play complementary roles in shap-
ing representations. Experiments on CIFAR-10,
CIFAR-100, and ImageNet validate these find-
ings, demonstrating the effectiveness of jointly
leveraging diffusion representations and synthetic
data within AT.

1. Introduction

Machine learning models are known to be vulnerable to ad-
versarial examples (Szegedy et al., 2014; Goodfellow et al.,
2015), inputs perturbed by semantically imperceptible noise
that can drastically alter model predictions. Among numer-
ous proposed defenses, adversarial training (AT) (Madry
et al., 2018; Zhang et al., 2019), which adversarially per-
turbs the input images during training, remains one of the
most effective approaches for achieving robustness on stan-
dard benchmarks such as RobustBench (Croce et al., 2021).

Previous work has shown that AT suffers from robust overfit-
ting (Rice et al., 2020), where robustness on test set degrades
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Figure 1. We plot robust accuracy and representation similarity
scores (Huh et al., 2024) for CIFAR-10 £,-robust models from
RobustBench (Croce et al., 2021). Similarity scores are measured
with respect to representations extracted from the diffusion model.
Implementation details and discussion are in Appendix A.

during training despite stable accuracy on clean images and
decreasing training loss. Multiple methods have been pro-
posed to understand and mitigate this issue (Wu et al., 2020;
Chen et al., 2021; Yu et al., 2022; Wang et al., 2023a;b;
Wu et al., 2024). Among them, arguably the most effective
approach to date has been the diffusion model with AT (DM-
AT) training recipe (Wang et al., 2023b), which leverages
large amounts of high-quality synthetic data generated by
diffusion models.

The DM-AT approach (Wang et al., 2023b), which does
not rely on additional real data to train diffusion models,
mainly treats diffusion models as synthetic data generators
to improve AT for robust classifier training. More broadly,
most of the existing efforts to improve AT have centered on
this synthetic data paradigm (Wang et al., 2023b; Ouyang
et al., 2023; Bartoldson et al., 2024). However, it is known
that diffusion models can produce meaningful intermediate
representations (Yang & Wang, 2023; Xiang et al., 2023;
Chen et al., 2025; Li et al., 2025¢). Whether these represen-
tations can be additionally leveraged on top of DM-AT to
improve robustness remains largely unexplored, presenting
a promising opportunity beyond synthetic data generation.

In this work, we systematically investigate whether repre-
sentations produced by diffusion models can enhance robust
classifier training. We hypothesize that the denoising ob-
jective of diffusion models enables them to capture robust
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semantic features from partially corrupted images, which
potentially facilitate the training of robust classifiers. Specif-
ically, we examine whether noisy-input intermediate acti-
vations extracted from diffusion models, recently shown to
provide competitive discriminative representations (Xiang
et al., 2023; Yang & Wang, 2023; Li et al., 2025c¢), serve
as effective feature priors for improving robust classifier
training.

We start our investigation with a preliminary analysis that
reveals a weak correlation between robustness and the align-
ment with diffusion representations using such activations
(Figure 1). Moreover, we observe that the extracted diffu-
sion representations exhibit several desirable properties, en-
coding diverse, lower-frequency-dependent information and
are less sensitive to irrelevant high-frequency noise. These
characteristics suggest that diffusion representations have
significant potential, in contrast to typical reconstruction-
based representation learning, which is known to be more
vulnerable to adversarial perturbations due to its reliance on
high-frequency signals (Huang et al., 2023).

Motivated by these findings, we propose to modify the DM-
AT recipe by incorporating a simple module that aligns
classifier representations with diffusion representations (Li
et al., 2023b; Yu et al., 2025; Stracke et al., 2025). The
modified recipe leverages diffusion representations as an
auxiliary learning signal while enabling flexbile choices
of classifier architectures for robust classification. Exten-
sive experiments on CIFAR-10, CIFAR-100, and ImageNet
across multiple architectures and diffusion-based synthetic
data settings demonstrate consistent improvements, effec-
tively exploiting the robust semantics encoded in diffusion
representations to enhance robust classifier training.

Building on recent mechanistic interpretability work (Gor-
ton & Lewis, 2025), we further deepened our analysis by
leveraging diffusion-generated synthetic data alongside dif-
fusion representation alignment. This approach reveals that
both interventions facilitate the learning of more easily
disentangled representations, yet they achieve this effect
through distinct underlying mechanisms.

Specifically, our analysis, guided by classification-aware
dimensions (Feng et al., 2022), reveals that diffusion-
generated synthetic data promotes robustness and gener-
alization by enabling the model to learn low-rank represen-
tations with strong generalization properties. In contrast,
diffusion representation alignment encourages the model
to effectively leverage its representational dimensions to
encode robust features, which are not necessarily low-rank.
Together, these findings suggest that diffusion representa-
tions and synthetic data provide complementary benefits for
robust classifier training, and that combining both further
enhances robustness and generalization.

Our contributions are summarized as follows:

* We show that diffusion representations encode features
that are partially robust and diverse, and leveraging
diffusion representations as an auxiliary learning signal
improves adversarial training.

* We find that the incorporation of diffusion models en-
courages representations that are easier to disentangle,
with synthetic data and representation alignment play-
ing complementary roles.

 Extensive experiments on CIFAR-10, CIFAR-100, and
ImageNet show that incorporating both diffusion repre-
sentation alignment and diffusion synthetic data consis-
tently improves robustness, offering an updated recipe
to build robust classifiers.

2. Related Work

Adversarial Robustness. Empirical robustness is com-
monly assessed with AutoAttack (Croce & Hein, 2020),
which is also the main evaluation protocol for Robust-
Bench (Croce et al., 2021). RobustBench excludes de-
fenses that rely on inference-time randomness or optimiza-
tion loops, since such mechanisms are frequently broken
by adaptive attacks and require more careful and costly
evaluations (Athalye et al., 2018; Gao et al., 2022). Conse-
quently, models competitve on RobustBench rely on adver-
sarial training to achieve robustness. Additionally, certified
defenses offer provable guarantees (Cohen et al., 2019; Car-
lini et al., 2023; Hu et al., 2024; Chen et al., 2024a; Lai et al.,
2025), but often introduce significant inference-time cost
or underperform adversarially trained models in empirical
robustness, especially models that are trained with diffu-
sion synthetic data (Wang et al., 2023b; Bartoldson et al.,
2024; Wu et al., 2025). In this work, we focus on improving
adversarial training and adopt AutoAttack as our primary
evaluation.

Diffusion Representations. Diffusion models have
achieved remarkable success in image generation (Ho et al.,
2020; Dhariwal & Nichol, 2021; Song et al., 2021; Rombach
et al., 2022; Karras et al., 2022; Ma et al., 2024; Yu et al.,
2025; Yao et al., 2025), and studies in representation learn-
ing have shown that intermediate activations extracted from
diffusion models are effective for discriminative tasks, in-
cluding competitive performance compared with other self-
supervised learning methods for image classification (Xiang
et al., 2023; Chen et al., 2025; Li et al., 2025¢) and dense
predictions (Stracke et al., 2025; Gan et al., 2025). The
latest advances in diffusion models have also leveraged
this insight to accelerate the training of diffusion models
by aligning the activations with large-scale self-supervised
learning encoders (Yu et al., 2025; Singh et al., 2025).
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In this paper, we investigate whether diffusion representa-
tions encode informative and robust semantics that can ben-
efit adversarially robust classification. Yagoda et al. (2025)
proposes to train prediction heads on frozen unconditional
diffusion representations as a lightweight robustness ap-
proach, but it relies heavily on inference-time randomness
and is less robust than adversarial training. Under EOT-
based evaluation (Athalye et al., 2018), the robust accuracy
drops substantially (Appendix C). Conversely, we show
that using diffusion representations as an auxiliary learning
signal can further strengthen adversarial training, and we
analyze how this integration shapes the learned classifier
representations.

Diffusion Purification and Generative Classifiers. In ad-
dition to generating synthetic data for adversarial training,
diffusion models have also been applied in adversarial purifi-
cation to remove adversarial noise (Nie et al., 2022; Li et al.,
2025b). However, such methods incur substantial inference
cost, and their reliance on randomness has been shown to
be vulnerable to adaptive attacks (Wang et al., 2024; Chen
et al., 2024b).

Another direction is to turn off-the-shelf diffusion models
into Bayesian generative classifiers (Li et al., 2023a; Clark
& Jaini, 2023; Chen et al., 2024b). At a high level, these
methods add noise to an input image, then denoise it con-
ditioned on each class, and finally select the class whose
reconstruction is most similar to the original input. They
exhibit desirable properties such as high error consistency
with humans (Jaini et al., 2024), robustness to imbalanced
datasets (Li et al., 2025a) that is free of the need to re-
train prediction heads on a balanced dataset (Kirichenko
et al., 2023), and adversarial robustness (Chen et al., 2024b).
These approaches can also be integrated with randomized
smoothing (Cohen et al., 2019) to provide certified de-
fenses (Chen et al., 2024a). Despite these advantages, the
approach incurs substantial inference overhead due to it-
erative denoising and class-conditional evaluation, which
scales inference cost with the number of classes and limits
practicality for deployment and full evaluation on datasets
such as ImageNet (Li et al., 2023a; Chen et al., 2024b). In
this work, we pursue a parallel path that focuses on lever-
aging diffusion models to enhance robust classifier training,
which is free of inference-time overhead.

3. Preliminaries

Adversarial Training (AT). Given a dataset D =
{(xs,y:)}, of image-label pairs, adversarial train-
ing (Madry et al., 2018) is formulated as

n
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Figure 2. Overview of Diffusion Representation Alignment (DRA).
We leverage an auxiliary projection head to align classifiers with
the extracted diffusion representations.

where fp is the model parameterized by 6, L is the cross-
entropy loss, and S(x) = {x’ : [|x’ — x|, < ¢} is the £,-
ball of radius ¢ centered at x. During training, projected
gradient descent (PGD) is used to approximately solve the
inner maximization by iteratively updating the adversar-
ial example. Considering the standard /., adversary, the
adversarial example is obtained by

th—H) = HS(xi) (th) + « sign (Vxﬁ(fg (th)), %))) y
@)
where « is the step size and Ils(y,)(-) denotes projection
onto S(x;) and the valid image pixel range.

Extracting Diffusion Representations. For a diffusion
model gy, it can be seen to be composed of an encoder g,
and a decoder g¢,... Given a denoising timestep ¢, the cor-
responding noisy image x;, and optional conditions c, we
refer to the output of the encoder, gy, (x¢,t,¢) = h2X, .,
as diffusion representations. In practice, for UNet-based dif-
fusion models, representations are typically extracted from
the upsampling blocks near the bottleneck layer (Xiang
et al., 2023), whereas for newer transformer-based diffusion
models (Peebles & Xie, 2023), representations are extracted
near the middle layers (Xiang et al., 2023; Chen et al., 2025).
Additionally, the representation quality of diffusion models
is often unimodal across timesteps, peaking at timesteps
where the noisy image x; contains a small amount of noise
that removes irrelevant details for the perception task. This
behavior can be explained by the high signal-to-noise ra-
tio at those timesteps (Li et al., 2025c). In this work, we
follow Xiang et al. (2023); Li et al. (2025c) to extract the
diffusion representations near the optimal timesteps.
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Figure 3. (a) The frequency saliency analysis of the linear-probed diffusion representation, adversarial trained robust model, and standard
trained non-robust model. Low frequencies are being centered. (b) The CIFAR-10 robust accuracy across perturbation budgets for the
linear probed diffusion representation (DR), adversarial trained robust model (AT), and standard trained non-robust model (ST).

4. Methodology

Prior work suggests diffusion models may be less effective
for representation learning and that pixel-reconstruction ob-
jectives can encourage non-informative or high-frequency
features that hurt downstream adversarial training (Yu et al.,
2025; Balestriero & LeCun, 2024; Huang et al., 2023). In
this section, we empirically show that diffusion models
trained via noisy-image denoising in fact learn features with
desirable properties. Building on this, we leverage diffu-
sion features as an auxiliary learning signal to improve
downstream adversarial training. Additional discussion and
analysis based on representation similarity is provided in
Appendix A.

4.1. Observation

Representation Metrics. We posit that diffusion models
encode representations that are inherently mildly robust but
preserve diversity that can improve downstream adversarial
training. To investigate the hypothesis, we analyze these
representations using two key metrics from the representa-
tion learning literature: uniformity and alignment (Wang &
Isola, 2020). Uniformity measures how evenly representa-
tions are distributed on the unit hypersphere, reflecting the
information preserved in the representation space, whereas
alignment measures the distance between the representa-
tions of data examples with different positive views. In our
setting, we form positive pairs by constructing adversarial
images. As shown in Figure 4, diffusion representations are
more robust than standard supervised training, while achiev-
ing richer features with noticeably higher uniformity metric.
In contrast, adversarial training increases alignment but de-
creases feature diversity, reflecting the difficulty of learning
robust model with great feature quality. In this work, we aim
to leverage diffusion representations to improve adversarial
training by shifting the alignment—uniformity frontier.

Frequency and Robustness Behavior. Vision models are
often sensitive to high-frequency input perturbations, while
adversarial training typically reduces this sensitivity and em-

phasizes more on low-frequency components (Chan et al.,
2022). Moreover, pixel reconstruction-based pretraining
like MAE has been reported to have worse adversarially
trained downstream performance than standard supervised
training, explained by a stronger reliance on mid and high-
frequency features (Huang et al., 2023). To investigate if
diffusion representations exhibit similar behaviors, we con-
duct frequency-saliency analysis on the PGD perturbations
on the CIFAR-10 linear-probed diffusion representations.
In Figure 3a, it shows that diffusion representations exhibit
lower high-frequency saliency that resembles robust models.
It also suggest that diffusion representations does not suffer
the same pixel-reconstruction frequency behavior reported
in previous work, which is likely related to the partially
noise-corrupted images seen during denoising training.

Additionally, one possibility is that frozen diffusion features
are already robust enough and do not require further robust
fine-tuning (Yagoda et al., 2025). We evaluate robustness
by measuring the robust accuracy of a linear probe trained
on top of a frozen unconditional diffusion model. To avoid
a false sense of robustness due to randomness (Athalye
et al., 2018), we make the noise used during diffusion fea-
ture extraction deterministic. Figure 3b shows that these
representations are inherently more robust to small-budget
perturbations than standard supervised finetuned models,
but still require robust training for competitive robustness.

4.2. Diffusion Representation Alignment for Robust
Classifier Training

To efficiently improve downstream adversarial training with
diffusion representations, we propose to integrate adversar-
ial training with representation alignment (Yang & Wang,
2023; Yu et al., 2025; Stracke et al., 2025). Figure 2 illus-
trates the overall framework, where we leverage an auxiliary
projection head to regularize the classifier representations.

Given an image-label pair (x, y), and the classifier fc s =
gp o fg consisted of an encoder fp and a classification head
gy, we regularize the classifier representation h§{™ = fj (%)
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Figure 4. Alignment and uniformity metrics on CIFAR-10 for the
standard-trained model (ST), the adversarially trained model (AT),
and the diffusion representations (DR).

given the adversarial example X computed during training.
Specifically, we align classifier representations with the rep-
resentations 2N, extracted from a frozen diffusion model,
using a trainable projection head gp,; that maps between the
representation spaces. The diffusion representation align-

ment loss is defined as

Lpra = _Sim(gproj (thS)’ hl}?it,y)? 3

where sim(+, -) is the given representation similarity metric.
The overall training objective becomes

Larpra = Lar + ALpra, @

where A controls the regularization strength. In practice, we
implement the projection head gp; with an MLP module
and use cosine similarity as the similarity metric, which
performs well empirically and matches the prior work rec-
ommendations (Yu et al., 2025; Stracke et al., 2025). The
regularization coefficient is set to A = 1.2 in our experi-
ments. For each image, we use a fixed timestep around
the optimal linearly probed timestep (Xiang et al., 2023) to
extract diffusion representations. More details and exper-
iments on extracting diffusion representations, projection
head, and timestep choices are provided in Appendix D.

5. Experiments

In this section, we evaluate the effectiveness of Diffusion
Representation Alignment (DRA) with adversarial train-
ing. The experiments across CIFAR-10, CIFAR-100, and
ImageNet with different architectures and settings show
consistent improvements. Lastly, we analyze the effect on
classifier representations when incorporating diffusion mod-
els into adversarial training.

5.1. Setups

We mainly follow the DM-AT (Wang et al., 2023b) setup,
which is the state-of-the-art adversarial training framework
that is also used by Bartoldson et al. (2024); Cui et al. (2024);
Wu et al. (2025). In the following, we briefly explain the
setup for each dataset. More implementation details are in
Appendix B.

Table 1. Clean and Robust Accuracy incorporating Diffusion Rep-
resentation Alignment on CIFAR-10, CIFAR-100, and ImageNet.

Dataset Model Method Clean AutoAttack
Acc. Acc.

CIFAR-10 WRN-28-10 DM]-?AI\;_flgRA giﬁ 23;;
TR wmsn o es wm
CIFAR-100 WRN-28-10 DM]-)Al\g_fTDRA 23:3451 ;ZZ
IV s DR 8S wR
e SN puTDRA 7603 5607
T s DM]-)Al\;_fll;RA ;ilgg Zgﬁ

CIFAR-10/100. For CIFAR-10/100 (Krizhevsky, 2009),
we follow the DM-AT recipe and perform AT with per-
turbation budget ¢ = 8/255 and step size o = 2/255,
using 10 PGD steps to adversarially augment the training
images. TRADES loss (Zhang et al., 2019) is used as the
adversarial training objective. To demonstrate the proposed
method effectiveness across different training budget setups,
CIFAR-10 experiments are conducted with synthetic data
containing 1 million, 20 million, and 50 million synthetic
images released by Wang et al. (2023b), with Diffusion Rep-
resentation (DRA) using the same frozen CIFAR-10 EDM
diffusion model checkpoint (Karras et al., 2022) that was
used to generate the synthetic images. Additionally, exper-
iments with CIFAR-100 using 1 million synthetic images
and EDM model released by Wang et al. (2023a) is also
provided. For model choices, we conduct experiments on
the WideResNets (Zagoruyko & Komodakis, 2016) WRN-
28-10 and WRN-34-10, which are widely used in the ad-
versarial training literature, as well as ViT-B/2 (Dosovitskiy
et al., 2021) following Wu et al. (2025).

ImageNet. Additionally, we conduct experiments on Ima-
geNet (Russakovsky et al., 2015), with models initialized
from strong pretrained checkpoints to demonstrate the ef-
fectiveness in real-world scenarios. We set the perturba-
tion budget to € = 4/255 and evaluate with an input reso-
lution of 224 x 224 following the RobustBench standard.
For model selection, we train and evaluate ViT-B/16 and
ConvNeXt-B (Liu et al., 2022), initialized from the DI-
NOv3 (Siméoni et al., 2025) pretrained checkpoints released
via t imm (Wightman, 2019). For the diffusion synthetic
data, we generate 4 million 256 x 256 synthetic images
using LightningDiT (Yao et al., 2025).

5.2. Diffusion Representations Improve AT

Table 1 summarizes the results on CIFAR-10, CIFAR-100,
and ImageNet when combining DRA with the state-of-the-
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Table 2. Comparison with state-of-the-art adversarial robustness methods across different settings on CIFAR-10.

Method Architecture ~ Synthetic Batch Epoch Clean AA

AT WRN-34-10 - 128 200 8433 55.25
AT+ADR (Wu et al., 2024) WRN-34-10 - 128 200  86.11 5526
AT+IKL (Cui et al., 2024) WRN-34-10 - 128 200  84.80 57.09
AT+DRA (Ours) WRN-34-10 - 128 200  88.54 57.29
DM-AT (Wang et al., 2023b) WRN-28-10 IM 512 400  91.12 63.35
DM-AT (Wang et al., 2023b) WRN-28-10 IM 1024 800 9143 63.96
DM-AT+DRA (Ours) WRN-28-10 IM 512 400 9236 64.12
DM-AT (Wang et al., 2023b) WRN-28-10 20M 2048 2400 9244 67.31
DM-AT+IKL (Cui et al., 2024) WRN-28-10 20M 2048 2400 92.16 67.75
DM-AT+DRA (Ours) WRN-28-10 20M 2048 2400 93.14 67.83
DM-AT ViT-B/2 20M 1024 500 9227 6647
DM-AT+DRA (Ours) ViT-B/2 20M 1024 500  93.36 67.74
DM-AT (Wang et al., 2023b) WRN-70-16 50M 1024 2000 93.25 70.69
DM-AT+RA (Peng et al., 2023) RaWRN-70-16 50M 1024 2000 93.27 71.07
DM-AT (Wu et al., 2025) ViT-B/2 50M 1024 2000 94.35 71.31
DM-AT+DRA (Ours) ViT-B/2 50M 1024 2000 95.22 71.77

art DM-AT recipe, which employs diffusion synthetic data.
The results indicate that diffusion representations provide an
effective feature prior for robust learning, leading to consis-
tent gains in both clean accuracy and adversarial robustness.

Moreover, the experiments on ImageNet also show the effec-
tiveness of leveraging diffusion representations when strong
self-supervised pre-trained vision foundation models are
available to be robust fintetuned to the downstream dataset.

Lastly, we evaluate CIFAR-10 with varying amounts of
synthetic data (Table 2), ranging from no synthetic images to
50 million. While scaling adversarial training with diffusion
synthetic data remains important for improving robustness,
we show that incorporating diffusion representations as an
auxiliary learning signal can more effectively leverage the
robust knowledge encoded in diffusion models.

5.3. Diffusion Representation Alignment Improves
Representation Quality

To understand if DRA actually improves representation qual-
ity, we plot the uniformity and alignment metrics on CIFAR-
10 trained checkpoints, along with the corresponding clean
and robust accuracy. Figure 5 presents the results, showing
that DRA effectively leverages the diverse features encoded
in diffusion representations, contributing to the improved
clean and robust accuracy.

5.4. Diffusion Model Encourages to Learn
Representations that are Easier to Disentangle

Recent mechanistic interpretability work hypothesizes that
models may rely on feature superposition to encode more

features than the available representation dimensions, which
involves representing features as non-orthogonal directions
in the activation space (Elhage et al., 2022). While this can
be effective for compressing features that rarely co-activate,
it has been suggested that superposition may be exploited
by adversarial examples (Gorton & Lewis, 2025; Stevinson
et al., 2025).

Moving from toy settings to real world datasets, where the
degree of superposition is difficult to quantify, Gorton &
Lewis (2025) uses Sparse AutoEncoders (SAEs) (Huben
et al., 2024; Gao et al., 2025) as a proxy for understanding
the effect of robust training on classifier representations.
SAEs learn a set of wide but sparse and interpretable fea-
tures that aim to reconstruct model activations, with lower
reconstruction loss reflecting the representation is easier to
disentangle into the set of sparse features.

To investigate the effect of incorporating diffusion mod-
els into adversarial training, we train TopK-SAEs on clas-
sifier representations with different sparsity levels, K &€
{8, 16, 32}, using model checkpoints trained on ImageNet,
and compare the normalized SAE reconstruction loss (Gao
et al., 2025; Gorton & Lewis, 2025).

Figure 6 presents the results. We find that incorporating dif-
fusion synthetic data and diffusion representation alignment
improves robustness while also reducing the normalized
TopK-SAE reconstruction loss, suggesting that the learned
representations become easier to decompose into sparse
features. This complements the observations of Gorton
& Lewis (2025), which report that adversarial training en-
courages more disentanglable representations, with larger
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Figure 5. We plot the alignment and uniformity metrics, along with
clean and robust accuracy on CIFAR-10 (/o = 8/255) shown in
parentheses.

perturbation budgets further amplifying this effect. Our
results show that incorporating diffusion models into adver-
sarial training can improve robustness and also encourages
to learn representations that are easier to disentangle.

5.5. Distinct Roles of Diffusion Models

Diffusion synthetic data augments the pool of input exam-
ples for adversarial training, while diffusion representation
alignment provides an auxiliary learning signal from the
mildly robust and diverse feature prior. In this section, we
further investigate how incorporating these methods into
robust training affects the resulting robust classifiers.

To understand how they shape classifier representations, we
build on the methodology of Feng et al. (2022) and examine
whether the use of representation dimensions changes when
diffusion synthetic data and diffusion-based representations
are introduced. Specifically, Feng et al. (2022) proposed
classification dimension as a measure of the intrinsic dimen-
sionality of the feature space, approximated by the minimum
number of principal components needed to preserve high
classification accuracy.

Concretely, we first apply PCA to the classifier representa-
tions to obtain eigenvectors. We then modify the forward
pass by projecting the representation onto the top-K eigen-
vectors before feeding it into the classification head, and
measure the resulting accuracy. As a robust-aware vari-
ant, we additionally measure robust accuracy by computing
eigenvectors from clean representations, and projecting ad-
versarial representations onto the subspace.

Figure 7 shows an example on a robust model trained on
CIFAR-10. As expected, classification accuracy gradually
recovers to the original performance as more eigenvectors
are included. For robust accuracy, however, we observe
that performance first improves and then degrades as K
increases, suggesting that adversarial perturbations may dis-

0.350
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Figure 6. We train Top-K SAEs on ImageNet with sparsity K €
{8, 16,32}, using ViT-B checkpoints trained with AT, DM-AT,
and DM-AT+DRA. Normalized SAE reconstruction losses are
reported for comparison (Gao et al., 2025).

proportionately exploit less important principal components.
Furthermore, Table 3 presents the results for CIFAR-10
adversarially trained models with the number of principal
components required to recover the clean accuracy perfor-
mance, and the robust-aware dimension that achieves the
highest robust accuracy. The results indicate that diffusion
representation alignment encourages the model to more
effectively leverage representation dimensions to encode
robust features, whereas diffusion synthetic data leads to
lower-rank representations.

While it is intuitive that representation alignment promotes
diverse and robust feature encoding, the mechanism behind
the lower-rank effect of diffusion synthetic data may be re-
lated to the observation that diffusion synthetic examples
are easier to classify than the original real data (Hu et al.,
2024). Prior work has also explored using partially synthe-
sized diffusion data as an augmentation strategy to improve
robustness (Sastry et al., 2024), though not specifically in
the context of enhancing adversarial training recipes. Al-
though previous work has largely attributed the benefits of
diffusion-based synthetic data to improved image quality
(Wang et al., 2023b; Bartoldson et al., 2024), it might not be
the most essential factor behind its effectiveness. We leave
this viewpoint as a potential direction for further improving
adversarial training.

5.6. Ablation Studies

Regularization Strength. As described in Section 4.2,
we set the alignment regularization strength to A = 1.2
in all experiments. We select this value based on a sweep
using WRN-28-10 on CIFAR-100, and then fix the same
coefficient for all remaining settings. Figure 8 shows that
DRA consistently improves upon the baseline in both clean
and robust accuracy. When A becomes too large, robustness
improvements saturate, as the alignment term can outweigh
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Figure 7. Clean and robust accuracy evaluated with a CIFAR-10
robust WRN-28-10 model when projecting features from natural
or adversarial images onto the top- K principal components before
the classification head.

the original adversarial training objective.

Does noisy input training alone learn good enough fea-
tures? Given that representations extracted from diffusion
models serve as effective feature priors for robust learn-
ing, a natural question is whether standard training coupled
with the same noisy-input procedure is sufficient to achieve
similar benefits. We explore this hypothesis by applying
noisy-input discriminative pre-training to the same UNet
encoder architecture used in the EDM diffusion model, us-
ing this encoder as the alignment target in Figure 2. Results
show that replacing the diffusion target in a WRN-28-10
trained with DM-AT+DRA (1M synthetic) reduces robust
accuracy from 64.12% to 62.62%, which is inferior to the
vanilla DM-AT baseline. This indicates that noisy-input
training alone are insufficient; rather, the generative training
objective of diffusion models is a critical factor in produc-
ing feature priors that benefit downstream robust training.
Relatedly, Jaini et al. (2024) found that diffusion-like noisy
discriminative pre-training increases shape bias but hurts
OOD accuracy. As a complementary finding, we analyze
the frequency behavior of leveraging diffusion representa-
tions or the noisy-input pretrained discriminative features,
and found that the latter have a undesirable effect of in-
creasing the sensitivity to mid-high frequency components
(Appendix E).

Why not adversarially finetune the diffusion encoder
directly? Several works in self-supervised learning that
leverage diffusion representations finetune the diffusion en-
coder end-to-end with a prediction head on top (Xiang et al.,
2023; Li et al., 2025c; Yagoda et al., 2025). We evaluated
this approach in our initial exploration under the same AT
setting as in Table 2. It achieves 87.77% clean accuracy
and 55.76% robust accuracy. While this improves over

Table 3. We evaluate Classification Dimension, with CLS-95
and CLS-99 refering to the number of components required to
recover 95% and 99% of the original classification performance,
and Robust-aware dimension, the number of principal components
where robust accuracy peaks, across different training methods on
CIFAR-10 with WRN-28-10.

Method CLS-95Dim CLS-99 Dim Robust Dim
AT 9 14 9
AT+DRA 15 42 22
DM-AT 10 11 11
DM-AT+DRA 12 15 23
—e— Clean AutoAttack
70.00
36.20
69.75
g 69.50 610
g 69.25 36.00
g 69.00 3590
68.75
35.80
68.50
35.70
0.0 0.6 12 18 0.0 0.6 12 18
A A

Figure 8. Clean and Robust accuracy on CIFAR-100 for DM-
AT+DRA with different DRA regularization strength \.

the WRN-34-10 AT baseline, it is still below WRN-34-10
AT+DRA and is less training-efficient (1.35x training time
per epoch). Additionally, diffusion models are often trained
with class conditioning for data generation; however, de-
ploying diffusion encoder at inference time can only provide
unconditional representations, which can result in slight de-
crease in representation quality (Xiang et al., 2023; Chen
et al., 2025). In contrast, DRA better leverages the robust
knowledge encoded in diffusion representations while en-
abling more flexible downstream classifier choices that are
better suited to the classification task.

6. Conclusions

In this work, we systematically explore whether diffusion
models can further improve adversarial training other than
synthetic data generation. We find that diffusion models en-
code representations that provide partially robust but diverse
features, and propose to integrate diffusion representation
alignment into adversarial training. Experiments across
settings and datasets show that incorporating diffusion rep-
resentations effectively leverages them as an auxiliary learn-
ing signal to improve robust classifier training. Furthermore
our analysis indicate that using diffusion models improves
classifier robustness and also encourages models to learn
representations that are easier to disentangle. We hope our
findings could further inspire future work to use diffusion
models to improve adversarial training from the perspective
other than generating better quality synthetic images.
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Impact Statement

This paper provides a systematic investigation on the poten-
tial of using representations encoded in diffusion models
to improve robust classifier training, which does not pose
significant societal consequences.
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A. Representation Similarity Analysis
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Figure 9. Similarity scores are measured with respect to repre-
sentations extracted from the diffusion model (red) and from the
RobustBench standard-trained model (gray).

Inspired by the work of Huh et al. (2024) analyzing represen-
tation similarities trained with different learning objectives,
we extract the representations from the CIFAR-10 EDM
diffusion model (Karras et al., 2022) used in DM-AT (Wang
et al., 2023b), and measure the representation similarity
score CKNNA (Huh et al., 2024) with the CIFAR-10 /.-
robust models from RobustBench (Croce et al., 2021). Fig-
ure 1 presents the results, showing that better robust models,
often trained with abundant synthetic images, already have
the tendency to exhibit higher representation similarity with
diffusion representations. As the tendency could also be
explained by better robust models having improved natural
classification performance for clean images, we also plot
the representation similarity score with the standard-trained
model from RobustBench (Figure 9). The results indicate
that the representations similarities between better robust
models and diffusion representations are stronger, which
further inspire us to investigate whether explicitly leverag-
ing diffusion representations as an auxiliary learning signal
is beneficial for robust classifier training.

B. Experiment Setup Details

For CIFAR-10/100 WideResNet training, we follow the
exact same setup as DM-AT (Wang et al., 2023b): 10-step
TRADES (Zhang et al., 2019) with 5 = 5, weight averaging
with 7 = 0.995, SGD with momentum 0.9, weight decay
5 x 1074, and Ir = 0.2 with cosine annealing scheduler.
For ViT-B, we follow Wu et al. (2025) and use the Lion
optimizer (Chen et al., 2023) with batch size 1024, ir =
10~*, and weight decay 0.5. For ImageNet models, we fully
fine-tune for 100 epochs using the Lion optimizer using
3-step TRADES with 8 = 10.
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C. Additional Discussion for Related Work

Yagoda et al. (2025) show that training a classification head
on frozen, unconditional diffusion encoders can achieve
robustness that is slightly below adversarially trained mod-
els, while being much cheaper to train. However, as their
approach rely on inference-time randomness, robust evalu-
ation should be more carefully considered (Athalye et al.,
2018). For example, the configuration of Attention Head,
b=8, t=50, have been reported to have achieve 46.0% Au-
toAttack Robust Accuracy, but a simple EOT-based evalu-
ation could reduce the reported robust accuracy to 17.3%.
We also evaluate a linear probe on an EDM diffusion model
on CIFAR-10 by fixing the added noise to remove inference-
time randomness during adversarial evaluation (Figure 3b).
The results show that diffusion representations still require
robust training to provide competitive robustness.

D. Representation Alignment Implementation
Details

Diffusion Representation Extraction. For CIFAR-10/100,
we use the same EDM diffusion model checkpoint as Wang
et al. (2023b) to generate synthetic images. We extract repre-
sentations at noise scale o; = 0.1 from the UNet bottleneck
block before the upsampling layers, and apply average pool-
ing over spatial dimensions.

For ImageNet, we use the LightningDiT checkpoint released
by Yao et al. (2025). We extract features from middle layer
14 at t = 0.8, where t = 0 orresponds to pure noise and
t = 1 being the clean image. We also found that Light-
ningDiT representations suffer from the large-activation
issue reported in prior work (Fang et al., 2025; Gan et al.,
2025), which reduces their effectiveness as a learning sig-
nal. To mitigate this, we follow the same procedure to first
identify channels that consistently exhibit abnormally large
activation norms, channels 1053 and 259 in the released
LightningDiT checkpoint, and then zero out these channels
before applying AdaLN modulation.

Finally, for CIFAR-10 models trained with more than one
million synthetic images, we extract an additional repre-
sentation per image by sampling an extra timestep using
the same sampling function the EDM model originally
used during training. This results in a slight improve-
ment, likely by better leveraging the representaitons across
timesteps (Stracke et al., 2025; Li et al., 2025¢).

Alignment Module. We follow Yu et al. (2025) and use
a 3-layer MLP, trained with the cosine similarity loss. In
initial experiments, more sophisticated alignment heads and
loss functions did not improve performance, so we retain
this simple configuration as recommended in prior work (Yu
et al., 2025; Stracke et al., 2025).



Expanding the Role of Diffusion Models for Robust Classifier Training

E. Noisy-Image Discriminative Pretrained
Representations
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Figure 10. The input gradient frequency difference maps between
DM-AT+DRA and DM-AT. (a) DRA aligned to noisy-input dis-
criminative pretrained representations. (b) DRA aligned to the orig-
inal diffusion representations. Positive values indicate increased
sensitivity. Low-frequency components are in the upper-left.

We train a classifier with the same diffusion UNet encoder
on the same noisy inputs, using cross-entropy loss. Its ac-
curacy is comparable to that of a linear probe trained on
diffusion representations. As discussed in Section 5.6, us-
ing these noisy-image discriminative representations as the
alignment target degrades robustness. To investigate the
effect, we compute frequency maps on the input gradients
and take the difference between DM-AT and DM-AT+DRA.
Figure 10 shows that diffusion representations reduce sen-
sitivity to low-frequency components, while alignment to
noisy-image discriminative representations increases sen-
sitivity to mid and high-frequency features. Our results
complement with the findings of Jaini et al. (2024), which
found that noisy discriminative training could lead to shape-
bias but decreased OOD classification performance.
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